Summer 2022 Week 3

MONDAY, 6/13/2022

This Week-

- AcrB Deletion
 - Perform a successful Transformation
 - Counterselect on AZT plates
 - \circ $\;$ Test to see if the cells grow on Carb
- NPTII
 - Insert NPTII PCR Product into Entry Vector
 - \circ $\,$ Transform NPTII Entry vector into NEB-5-a cells
 - o Screen and sequence colonies to determine correct insertion
 - Order Primers for Ncol deletion
- Tem-1
 - Find the pBTK404 plasmid
 - Run PCR of Tem-1 gene on pBTK404
 - Insert PCR product into Entry Vector
 - Transform NPTII Entry Vector into NEB-5-α cells
 - Screen and sequence colonies to determine correct insertion
 - \circ $\,$ Run PCR for deletion product
 - o Order more deletion primers

Experiment 1 (AcrB Deletion

- I innoculated 2 Cultures of ADP1 ISX for transformation tomorrow
 - Follow Up- Add 35 uL of culture into a + DNA and a -DNA tube. Add GGA product into +DNA tube
- Ran GGA reaction with AcrB homologies and pBTK622
 - Run a Gel With the following
 - Pre GGA reaction (i.e no enzymes added to the reaction)
 - No template DNA added
 - Homology flank's by themselves
 - Plasmid by itself
 - Cut plasmid by itself?
- GGA Checklist
 - 20 uL of total reaction volume
 - 4.0 uL AcrB U
 - 4.1 uL AcrB D
 - 3.7 uL pBTK622
 - 4.2 uL Water
 - 2 uL 10x T4 dna Ligase Buffer
 - 🔽 1 uL Bsa1 HF
 - 🔽 1 uL T7 DNA Ligase

<u>3 GGA reactions were set up</u>

- a. Typical GGA reaction
 - Expected Gel- AcrB tdk/kan casette at 3.7 pBTK622 backbone at 1.6
- b. No Enzymes Reaction
 - Expected Gel- Homologies at 1kb and Plasmid at 3.3 kb
- c. No Homologies Reaction
 - Expected Gel- tdk/kan cassette at 1.6 kb and Plasmid backbone at 1.6
- \circ $\,$ Follow Up- Run the Gel in the manner discussed later in this page

- New Kanamycin plates were made
 - Follow Up- Check for contamination

Experiment 2 (NPTII Gene Detector)

- Ran a PCR of NPTII gene on pKD13
 - Unsuccessful PCR

Experiment 3 (Tem-1 Gene)

• Beth Innoculated a culture of pBTK404 strain for me

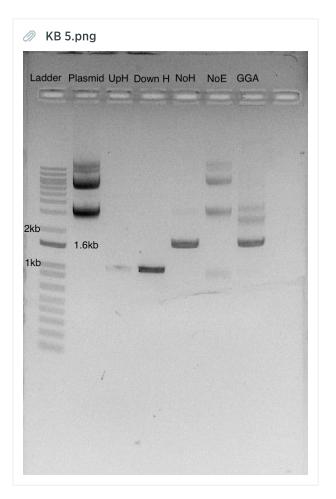
Plan for Tomorrow's GGA Gel

Up Homology

4.0 uL of UpH = 150 ng -----> Load- 4.0 uL UpH + 1.0 uL Water + 1.0 uL Dye

Down Homology

4.1 uL Down H = 150 ng -----> Load 4.1 uL Downh + 0.9 UI Water + 1.0 uL Dye


Plasmid

3.7 uL Plasmid = 250 ng ----> load 3.7 uL pBTK622 + 1.3 uL water + 1.0 uL Dye Ladder-Plasmid-UpH-DownH-NoH-NoE-GGA

TUESDAY, 6/14/2022

Experiment 1 (AcrB Deletion)

- No Contamination was seen On the Kanamycin Plates
- Plated ADP1 ISX on kan plates
 - No growth should be seen
 - Follow Up- check back at 5:30 to see if we got growth
- Innoculated Three overnight Cultures w/ +DNA -DNA and No cell's
 - Follow up- @ 5:30 to plate the cell's
- Ran the proposed Gel
 - Ladder-Plasmid-UpH-DownH-NoH-NoE-GGA

- Ran a successful PCR of AcrB Homologies
 - $\circ~$ Up Tm- 58° or 60°
 - Down Tm- 60°
- Cleaned AcrB Homology PCR Product
 - Follow Up- Quibit for [] and use for GGA w/ pBTK622
- Plated -DNA and +DNA on LB-Kan plates
 - Follow Up- Check to see if +DNA grew and -DNA didn't.
 - WE GOT EXPECTED RESULTS
 - Growth on +DNA no Growth on -DNA
 - Follow Up- Innoculate a couple of colonies in LB+Kan Tubes
 - One for Whole Cell PCR
 - One to be frozen
 - One for counter selection

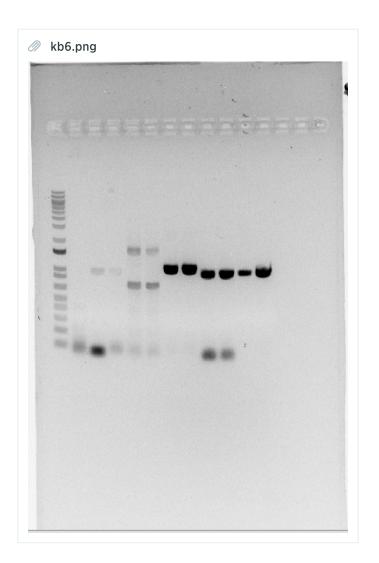
Experiment 2 (NPTII Gene Detector)

- Ran an unsuccessful PCR of NPTII Gene
 - Tm- 58°
 - Follow Up- Run PCR at 61° next time
- Located pBTK1001 plasmid
 - o Strain-JEB1435
 - Grows in LB+Cam
 - o Box- Barrick 14
 - Rack- Barrick 2
 - Follow Up- Innoculate a Cuture of JEB1435

•

Experiment 3 (Tem-1 Gene Detector)

- Isolated the pBTK404 Plasmid from an overnight culture


 10.4 ng/uL
- Froze a glycerol stock of pBTK404 E. coli strain
- Ran a successful PCR of Tem-1 Gene
 - Tm- 56
 - Cleaned the Tem-1 PCR Product
 - $\circ~$ Follow Up- Quibit for [] and Insert into the pBTK1001 Entry vECTOR

Mega Gel Electrophoresis

Order: L-C1-CU-CD-N1-N2-T1-T1-U1-U2-D1-D2 Tm's

> AcrB Up= 58 or 60 AcrB Down = 60 NPTII = 58 Tem-1 =56

Results:

WEDNESDAY, 6/15/2022

Experiment 1 (AcrB Deletion)

- Performed a Successful transformation
 - Saw growth on +DNA and no growth on -DNA
- Innoculated Colonies
 - a. LB+Kan+Colony = Whole Cell PCR
 - b. LB+Kan+Colony = Glycerol Stock
 - c. LB+Kan+Colony = Counter Selection w/ AZT
 - d. LB + Colony = + Control
 - e. LB + Kan = Control
 - Follow Up-
 - Make glycerol stock of one culture
 - Whole Cell PCR of another culture
 - Proceed w/ counterselection of final culture
- 344 CFU's were seen


AcrB Deletion Colonies.jpg

- Determine [] of AcrB Homolgy PCR's
- Ran Bsmbl GGA reaction w/ AcrB homologies for counter selection
 - 2.9 uL Acrb Up
 - 2.7 uL Acrb Down
 - 2 uL T4 ligase buffer
 - 🔽 1 uL T7 DNA ligase
 - 🗹 1 uL Bsmbl
 - 🔽 10.4 uL Water
 - Follow Up- Run Gel to confirm and perform AZT transformation

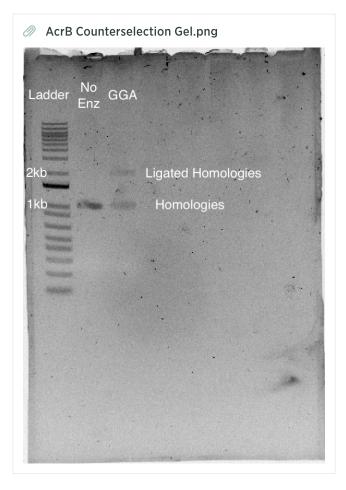
- One w/ no enzyme and one normal GGA rxn
- Made some AZT and LB plates
 - Follow Up- Check for contamination on plates, label and move to fridge

Experiment 2 (NPTII Gene Detector)

- Ran a PCR of NPTII
- Tm's @ 58°C, and 61°C
- NPTII PCR Gel Electrophoresis
 - o Order: Ladder-C58-C60-58-58-61-61

Experiment 3 (Tem-1 Gene Detector)

- Innoculated Culture of JEB1435
 - Box- Barrick 14
 - Rack- Barrick 2
 - Grow on LB + Cam
 - 3 tubes
 - LB + Cam + pBTK1001
 - Growth Expected
 - LB + Cam + MG1655
 - No growth
 - LB + Cam + No cell's
 - No growth
 - LB + pBTK1001
 - Growth


- LB + MG1655
 - Growth
 - LB + No Cell's
 - No Growth
- Follow Up Tomorrow-
 - Freeze Glycerol Stock of LB +CAM +pBTK1001
 - Run a plasmid mini prep
- Determine [] of yesterday's PCR

•

THURSDAY, 6/16/2022

Experiment 1 (AcrB Deletion)

- Ran a gel to confirm ligation of GGA reaction
 - Order: Ladder No Enzymes GGA

- Innoculated a +DNA and -DNA culture
 - Follow Up-
 - Plate +DNA and -DNA on AZT plates
 - Plate +DNA and -DNA on LB only
- Made two Glycerol Sotock's of AcrB tdk/kan strain
 - Follow Up- Make an iGEM Strain database
- Whole Cel PCR
 - 🔽 108 μL water
 - 40 μL of Phusion HF buffer

- I0 μL Forward Primer
- 10 μl Rverse Primer
- 🖉 6 uL DMSO
- 4 μL of mM dNTPs
- 2 μL Phusion DNA polymerase

15-150= 135

- Innoculate a culture of ADP1-ISX and the AcrB transformants
 - LB+Kan+Transformant = Growth
 - LB + Transformant = Growth
 - LB + Kan +ADP1-ISX = No Growth
 - LB + ADP1-ISX = Growth
 - \circ LB + KAN = No Growth
 - LB = No Growth
 - $\circ~$ Run another Whole Cell PCR w/ the tranformant and a culture of regular ADP1-ISX

Experiment 2 (NPTII Gene Detector)

Experiment 3 (Tem-1 Gene Detector)

- Froze a glycerol stock of pBTK1001
- Isolated the pBTK1001 Plasmid
- Run GGA rxn w/ entry vector and TEM-1
 - 2.9 uL Acrb Up
 - 2.7 uL Acrb Down
 - 2 uL T4 ligase buffer
 - 1 uL T7 DNA ligase
 - 🔽 1 uL Bsmbl
 - 10.4 uL Water

FRIDAY, 6/17/2022

Experiment 1 (AcrB Deletion)

- Plated +DNA on an AZT plate and an LB plate
 - Follow Up-
 - +DNA on AZT = Growth
 - +DNA on LB = Growth
- Plated -DNA on an AZT plate and an LB PLate
 - Follow Up-
 - -DNA on AZT = No growth
 - -DNA on LB = Growth
- Follow Up- Choose three colonies to innoculate
- Set up a Whole Cel PCR
 - 🗹 27 μL water
 - I0 μL of Phusion HF buffer
 - 2.5 μL Forward Primer
 - 2.5 μl Rverse Primer
 - 1.5 uL DMSO
 - 1 μL of mM dNTPs

- S μL Phusion DNA polymerase .5
- Run at 58° C
- Follow up- Run Gel to determine success of the Whole Cell PCR

Ladder ISX Trans man	for t		-
And Andrew Construction			
· () ·			
And a second sec			
2kb 1.6kb			
-	0 2		
	Offtarget		
		1	

UNSUCCESSFUL!!

Experiment 2 (NPTII Gene Detector)

• Follow Up- Run a PCR to amplify NPTII gene

Experiment 3 (Tem-1 Gene Detector)

• Follow Up- Run a GGA Reaction to ligate Tem-1 gene to Entry Vector

SATURDAY, 6/18/2022

Experiment 1 AcrB Deletion

• Saw growth on LB plates, no growth on AZT -DNA and growth on AZT+ DNA

The bottom right dish shows the AZT counterselection

- Innoculate Cultures of Counter Selection
 - LB No Cells
 - LB + Colony for Glycerol Stock
 - LB + Colony + Kan = No growth should be observed
 - LB + Kan No cells
 - \circ $\,$ Follow Up- Innoculate a overnight culture of glycerol stock for WCPCR $\,$

Question 10

Question 11

Question 12

Question 20 - Show figure of circuit or workflow?