Molecular Biology

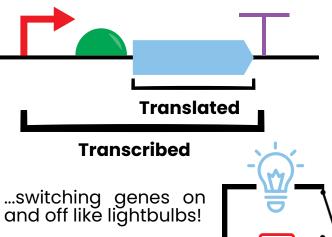
To understand Synthetic Biology, first we must understand the molecular processes that are essential to all life.

DIV DNA holds all the information about how **Transcription:** an organism copying will look and information from function. DNA to RNA **RNA** passes this information Translation: along to transformation of later make RNA into protein proteins by **Ribosomes** (Prótein Factories) Protein are the building blocks of life Think of it like this: **RNA** is the order **DNA** is the **Protein** is recipe book to the kitchen the food

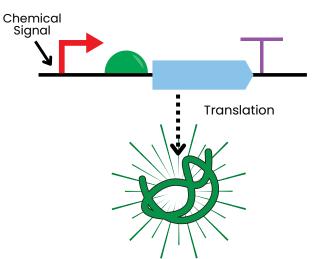
Parts

DNA stores information and important sequences control these processes. These parts of DNA with special functions are represented below:

> Gene: A DNA sequence with instructions to make a protein


Promoter: A DNA sequence in front of the gene that starts transcription

Terminator: A sequence after a gene that **stops** transcription


Ribosome Binding Site: A sequence that starts RNA translation

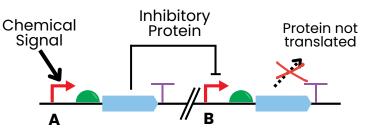
These parts work together like batterie's and switches in electrical circuits...

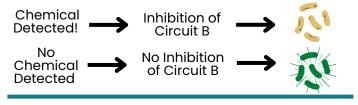
Synthetic Biology

In Synthetic Biology we rearrange these parts to give organisms new functions. For example, we can make a **biosensor** by modifying bacteria to detect a certain chemical.

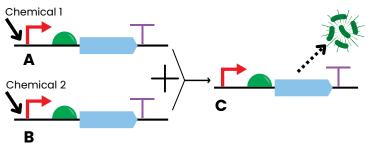
Here, the promoter starts transcription in the presence of a specific chemical. The gene is then **translated** into a protein that emits light:

Chemical Signal


We can then use the bacteria to investigate harmful compounds in water and soil.


Genetic Circuits

Like a computer processing complex inputs, if we arrange these **genetic circuits** correctly, we can get our organism to respond differently to its environment.


Instead of glowing when it detects a harmful chemical, what if we wanted our bacteria to detect the **absence** of an important chemical?

We can link two circuits together! Follow the logic below:

What if chemical 1 was only harmful in the presence of chemical 2? How could we make our bacteria glow only when both are present?

We can feed inputs from two circuits into a third! But in real Synthetic Biology, there are many answers.

The World is Yours

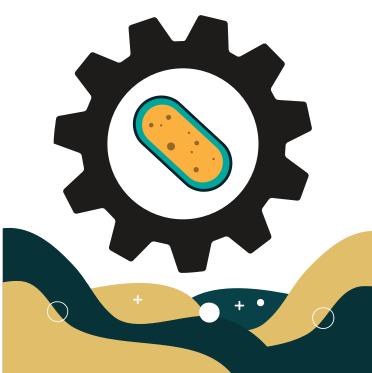
These circuits can be mixed and matched with incredible results and endless applications! Some include:

Diagnostics: Making biosensors to detect diseases in humans and plants earlier and cheaper than current tests.

5

Environment: Engineering plants to absorb toxic material from soil to clean up e.g. industrial spills.

Manufacturing:


Engineering microorganisms to efficiently produce medication, detergents, biofuels and even plastics!

Building on decades of genetic research and new technologies, Synthetic Biology has the potential to change the world.

What will **you** build?

Synthetic Biology

A Technical Guide

