SDS-PAGE

AIM: To confirm the purity of protein by separating them on the basis of molecular weight.

Stock solutions

1. Acrylamide stock

Dissolve 29.2g of Acrylamide and 0.8g of Bis-Acrylamide into 100ml dH2O. Then filter it with Whatman no.1 paper. Store it at room temperature in a dark bottle as it is a light-sensitive solution.

2. Running buffer (10 X)

Dissolve 30g of tris base, 144g of glycine and 10g of SDS in 1000ml dH2O. Make 1 X buffer out of it.

3. Sample buffer- (5ml)

Tris HCI (0.25M, pH- 6.8)- 1.25ml Glycerol (50%)-2.5ml Bromophenol blue (0.25%) - 0.0125g SDS (10%)- 0.5g Beta- mercaptoethanol (0.5M) - 1ml

15% resolving gel and 5% stacking gel

Resolving gel recipe: (15%)- 5mL

Components	Quantity(mL)
Water	1.1
Acrylamide(30 %)	2.5
Tris(1.5M, pH 8.8)	1.3
SDS(10 %)	0.05
Ammonium persulphate(10 %)	0.05
TEMED	0.002

Stacking gel recipe: (5%) - 1mL

Components	Quantity(mL)
------------	--------------

Water	0.68
Acrylamide mix(30%)	0.17
Tris(1M,pH6.8)	0.13
SDS(10%)	0.01
Ammonium persulphate(10%)	0.01
TEMED	0.001

Procedure

1. Preparation of resolving gel

- Assemble gel sandwich cassette on the stand.
- Prepare a cocktail of the composition as mentioned above of resolving gel.
- Then pipette resolving gel solution in gel sandwich template in the appropriate amount.
- Then add 1cm of isopropanol on top for uniforming the margin.
- Allow it to polymerise for 30-60min.
- After the gel solidifies, remove liquid isopropanol

2. Preparation of stacking gel

- Prepare a cocktail of the composition mentioned above for stacking gel.
- Then pipette the solution on the separating gel until it reaches the top of the front plate.
- Carefully insert the comb into the gel sandwich without trapping air bubbles.
- Allow it to polymerise for about 30min.
- After it gets polymerised, remove the comb
- Take out the polymerised gel with gel cassettes.
- Fix the gel setup into the electrophoresis apparatus.

Note -

- While fixing the gel setup in the electrophoresis apparatus, make sure that the bigger plate faces outside and the small plate of gel cassette.
- Remember never to let the gel dry. Hence, wrap the gel with a gel cassette in the tissue and store it in a 4°C refrigerator dipped in distilled water.

3. Preparation and loading of sample

- Mix protein sample and 5x Sample buffer in 4:1 ratio respectively in the Eppendorf tube.
- Heat it at 95 degrees Celsius for 5 min.
- Then bring it to room temperature to cool for some time (5mins)
- Load the 2 ul of protein marker (protein ladder) in the 1st well.
- Load the sample protein in the wells of the stacking gel.
- Add the running buffer to the top and bottom of the reservoir.

4. Running a gel

- Attach the electrode plug to the appropriate electrode and turn the power supply to 50V until the sample enters the separating/resolving gel and then increase the voltage to 120V.
- The dye front should migrate to the bottom of the gel in 60-90min for 1mm gel
- Turn off the supply
- Remove electrodes and gel setup from the electrophoresis apparatus.

Coomassie staining in the gel Staining the protein in the SDS-PAGE for primary analysis of protein separation.

1. Staining solution recipe

Coomassie blue (R-250)- 0.6g Methanol- 90ml Glacial acetic acid- 20ml dH2O- 90ml

2. Gel destainer / destaining solution

Methanol- 200ml Glacial acetic acid- 40ml dH2O- 160ml

Procedure:

- 1. Pick up the gel from the gel cassette and transfer it into a small container containing water.
- 2. Then transfer the gel to a staining solution.
- 3. Agitate for 45mins-1hr in the staining solution on a slow rotary shaker at room temperature.
- 4. Pour out the stain and rinse the gel with a few changes of water.
- 5. Agitate for 10min in the dH2O on a slow rotary shaker at room temperature.
- 6. Pour out the water and add the destaining solution to it.
- 7. Agitate overnight in the destaining solution on a slow rotary shaker at room temperature.
- 8. Pour out the destaining solution. The blue color protein bands will be visible.
- 9. Add water to the container having the gel to avoid it from drying

Note- • Cover the container with a lid during staining and destaining to prevent evaporation.