

RCA Template

Wet Lab

ZZU-China, October 2025

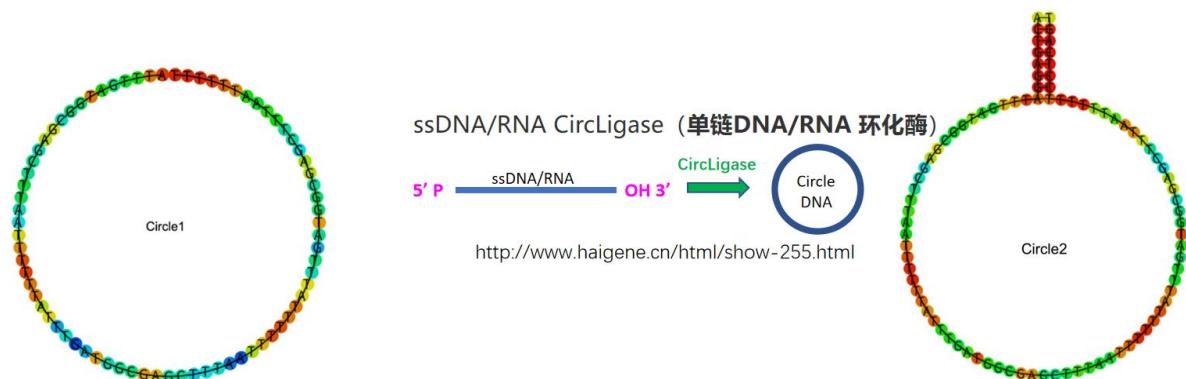
Contents

1.Design	3
32.Preparation of Circular DNA	3
2.1Materials	3
2.2Circularization Reaction	4
2.3 Removal of Residual Linear ssDNA	4
2.4 Purification	5
2.5 Measure cssDNA Concentration	5
3.Rolling Circle Amplification (RCA)	5
3.1Materials	5
3.2Optimization of Circular DNA Concentration	5

RCA Template

1. Design

Since Cas14a uses sgRNA (equivalent to crRNA in Cas12a), the sequence is as follows:


CUUCACUGAUAAAGUGGAGAACCGCUUCACCAAAAGCUGUCCCUUAGGGGAU
UAGAACUUGAGUGAAGGUGGGCUGCUUGCAUCAGCCUAAUGUCGAGAAGUG
CUUUCUUCGGAAAGUAACCCUCGAAACAAAUUCAUUUUUCCUCUCCAAUUCU
GCACAAGAAAGUUGCAGAACCCGAAUAGACGAAUGAAGGAAUGCAAC + guide sequence

guide sequence=**AUUUGAUGGCGAGCUUUAAU**

sgRNA sequence:

CUUCACUGAUAAAGUGGAGAACCGCUUCACCAAAAGCUGUCCCUUAGGGGAU
UAGAACUUGAGUGAAGGUGGGCUGCUUGCAUCAGCCUAAUGUCGAGAAGUG
CUUUCUUCGGAAAGUAACCCUCGAAACAAAUUCAUUUUUCCUCUCCAAUUCU
GCACAAGAAAGUUGCAGAACCCGAAUAGACGAAUGAAGGAAUGCAAC**AUUUGA**
UGGCGAGCUUUAAU

The circular ssDNA is designed using the **Complement Target sequence** as the main unit, repeated three times and connected end-to-end, forming the **circle1** sequence. To improve ligation efficiency, reverse complementary sequences **ACTGAGG** (at 5') and **CCTCAGT** (at 3') are added to both ends (forming **circle2**), so that after annealing, the 5' and 3' ends are brought into close proximity, facilitating circularization by CircLigase.

2. Preparation of Circular DNA

2.1 Materials

- circle2 sequence (5'-phosphorylated, HPLC purified)
- CircLigase
- 2.5× CircLigase Buffer
- 50 mM MnCl₂

- Exonuclease I
- 10× EXO1 Buffer
- DNA Purification Kit
- Ultrapure Water
- Constant Temperature Water Bath
- Nanodrop Spectrophotometer

2.2 Circularization Reaction

1. Synthesize the **circle2** sequence with 5'-phosphorylation modification and HPLC purification.
2. Denature the **circle2** sequence at 94°C for 3 min, then cool to room temperature before use.

Table 1. Circularization Reaction System Setup

Reagent	Volume
CircLigase(100 U/μL)	2μL
Circle2sequence (10μM)	20μL
2.5×CircLigase Buffer	16μL
MnCl ₂ (50mM)	2μL

3. **Circularization reaction:** Incubate at 60°C for 60 min. After completion, heat-inactivate CircLigase at 85°C for 10 min to prevent interference in downstream steps.

2.3 Removal of Residual Linear ssDNA

Use Exonuclease I to degrade any unligated linear ssDNA remaining after the circularization reaction.

Table 2. Degradation Reaction System Setup

Reagent	Volume
Exonuclease I Buffer	6μL
Exonuclease I	6μL
Circularization product	40μL
ddH ₂ O	Up to 60μL

Incubate at 37°C for 30 minutes. Then, inactivate Exonuclease I by heating at 80°C for 15 min.

2.4 Purification

Use a small-scale DNA purification kit according to the manufacturer's instructions to purify the product, eluting in 50 μ L to obtain circular ssDNA.

2.5 Measure cssDNA Concentration

Determine concentration using Nanodrop at 260/280 nm

3. Rolling Circle Amplification (RCA)

3.1 Materials

- 10× Phi29 Buffer
- dNTP Mix
- Phi29 DNA Polymerase
- Target strand
- Circular DNA prepared in previous step
- DEPC-treated Water
- CRISPR Reagents

3.2 Optimization of Circular DNA Concentration

Take 10 μ L each of circular DNA at concentrations of 100 nmol/L, 500 nmol/L, and 800 nmol/L, respectively. Mix each with 4 μ L of target strand (5 nmol/L). Perform duplex annealing at 94°C for 5 min. After annealing, slowly cool the reaction system to room temperature to ensure stable double-stranded formation. Then add to the phi29 reaction system for amplification.

Table 3. Reaction System Setup

Component	Volume(μ L)
10× Phi29 Buffer	2
dNTP Mix (10 mM)	2
Phi29 DNA Polymerase	1
Annealing products	14
DEPC-treated water	1

Then, take 20 μ L of the RCA product and add it to the CRISPR reaction system (total volume 40 μ L).