
Appendix A: Stochastic derivation of average lifespan, burst size & basic 
reproduction number 

In this part, we show the process for deriving equations (6) and (7) through a probabilistic 
argument based on biological definitions. We also show the derivation of the average 
lifespan of infected cells and viruses. 

The death rate of infected cells, δ(a), is interpreted as the instantaneous rate of death at 
infection age a [2]. If we consider X to be a random variable representing the age at death, 
F(a) as the probability of dying by age a, f(a) as the probability density function of X, and 
P(A) as the probability of an event A occurring, then δ(a) is calculated as follows. 

 δ(𝑎): =
∆𝑎 0

lim
→

𝑃(𝑎≤𝑋≤𝑎+∆𝑎|𝑎≤𝑋)
∆𝑎 =

∆𝑎 0
lim

→
𝑃(𝑎≤𝑋≤𝑎+∆𝑎)

𝑃(𝑎≤𝑋)∆𝑎

・・・(A1) = 𝑓(𝑎)
1−𝐹(𝑎) =− 𝑑

𝑑𝑎 𝑙𝑜𝑔(1 − 𝐹(𝑎))

Therefore, probability of dying at infection age a: 

・・・(A2) 𝐹(𝑎) = 1 − 𝑒
−

0

𝑎

∫δ(𝑠) 𝑑𝑠

Since  as   is necessary、 . 𝐹(𝑎) → 1 𝑎 → ∞ 𝑒
−

0

𝑎

∫δ(𝑠) 𝑑𝑠
→ 0

Probability density function of this probability: 

・・・(A3) 𝑓(𝑎) = δ(𝑎)𝑒
−

0

𝑎

∫δ(𝑠) 𝑑𝑠

Using this, the average lifespan after infection can be calculated by . If 
0

∞

∫ 𝑎𝑓(𝑎) 𝑑𝑎

, then δ(𝑎) = δ = 𝑐𝑜𝑛𝑠𝑡.

・・・(A4) 
0

∞

∫ 𝑎𝑓(𝑎) 𝑑𝑎 =
0

∞

∫ 𝑎δ𝑒−δ𝑎 𝑑𝑎 = 1
δ

Similarly, the average lifespan of virus is calculated as . 1
𝑐

 
Burst size is biologically interpreted as the total number of virus particles produced from 
when one infected cell arises until it dies. Therefore, burst size N is defined as follows as the 
expected value taking the sum of the product of the amount of virus released by infectious 
age a and the probability of dying at infection age a. 

・・・(A5) 𝑁: =
0

∞

∫(
0

𝑎

∫ 𝑝(𝑠) 𝑑𝑠) · 𝑓(𝑎) 𝑑𝑎

Substituting equation (A3) and calculating further, we have 

 𝑁 =
0

∞

∫(
0

𝑎

∫ 𝑝(𝑠) 𝑑𝑠)δ(𝑎)𝑒
−

0

𝑎

∫δ(𝑠) 𝑑𝑠
 𝑑𝑎

 =
0

∞

∫ 𝑝(𝑎)𝑒
−

0

𝑎

∫δ(𝑠) 𝑑𝑠
 𝑑𝑎 − [(

0

𝑎

∫ 𝑝(𝑠) 𝑑𝑠)𝑒
−

0

𝑎

∫δ(𝑠) 𝑑𝑠
]

0
∞



・・・(7) =
0

∞

∫ 𝑝(𝑎)𝑒
−

0

𝑎

∫δ(𝑠) 𝑑𝑠
 𝑑𝑎

Here, we used the fact that  and  as . From the above, 
0

𝑎

∫ 𝑝(𝑠) 𝑑𝑠 <  ∞ 𝑒
−

0

𝑎

∫δ(𝑠) 𝑑𝑠
→ 0 𝑎 → ∞

equation (7) is obtained.  
 
Also, the basic reproduction number is biologically interpreted as the number of new infected 
cells that one infected cell produces in its lifetime at the initial stage of infection. Therefore, 
using virus burst size N, infection rate per virus particle per unit time at t=0 β_T0, and 
average lifespan of virus 1/c, the basic reproduction number R0 is calculated as follows. 

・・・(6) 𝑅
0
: = 𝑁 ·

β𝑇
0

𝑐

Appendix B: Threshold principle of the basic reproduction number（タブ） 
In this section, we briefly introduce the proof that the dynamics of mathematical model (1)-(5) 
converges to a state without infection, non-infected equilibrium state, in the case of R0<1, 
and converges to a state where infection continues to exist, infected equilibrium state, in the 
case of R0>1. The proof refers to reference [4] 
 
First, we will simply show that when R0<1, the solution (T(t), i(t, a), V(t)) of the differential 
equation system globally converges to the infection-free equilibrium state E0=(T0, 0, 0), that 
is, the infection dies out. 
However, . 𝑇

0
= λ

𝑑

As characteristic functions, we define the following two non-negative functions:  

・・・(B1) σ(𝑎): = 𝑒
−

0

𝑎

∫δ(𝑠) 𝑑𝑠

・・・(B2) α(𝑎): =
𝑎

∞

∫ 𝑝(𝑢)𝑒
−

𝑎

𝑢

∫δ(𝑠) 𝑑𝑠
 𝑑𝑢

If (a) and p(a) are non-negative and bounded, it has been found that (a) becomes 
non-negative and bounded. Also, we have 

・・・(B3) 𝑑α(𝑎)
𝑑𝑎 = δ(𝑎)α(𝑎) − 𝑝(𝑎)

The Lyapunov function  for the infection-free equilibrium state is defined as follows. 𝐿
0
(𝑡) 𝐸

0

・・・(B4) 𝐿
0
(𝑡): = 𝑇(𝑡) − 𝑇

0
− 𝑇

0
𝑙𝑜𝑔 𝑇(𝑡)

𝑇
0

( ) + 1
𝑁

0

∞

∫ α(𝑎)𝑖(𝑡, 𝑎) 𝑑𝑎 + 1
𝑁 𝑉(𝑡)

The function g(x)=x-1-log x (x>0) has a global minimum value g(1)=0 at x=1. Therefore, 
when T(t)>0, 

・・・(B5) 𝑇(𝑡) − 𝑇
0

− 𝑇
0
𝑙𝑜𝑔 𝑇(𝑡)

𝑇
0

= 𝑇
0

𝑇(𝑡)
𝑇

0
− 1 − 𝑙𝑜𝑔 𝑇(𝑡)

𝑇
0

( ) ≥ 0 

Therefore, . From this and ,  takes the minimum value 0 only at point 𝐿
0
(𝑡) ≥ 0 α(𝑎)≥ 0 𝐿

0
(𝑡)

. The time derivative of  is,  𝐸
0

𝐿
0
(𝑡)

・・・(B6) 
𝑑𝐿

0
(𝑡)

𝑑𝑡 = 1 −
𝑇

0

𝑇(𝑡)( ) 𝑑𝑇(𝑡)
𝑑𝑡 + 1

𝑁
0

∞

∫ α(𝑎) ∂𝑖(𝑡,𝑎)
∂𝑡  𝑑𝑎 + 1

𝑁
𝑑𝑉(𝑡)

𝑑𝑡



When this is transformed using equations (1)-(6), (B3),  and , α(0) = 𝑁 𝑖(𝑡, 0) = β𝑇(𝑡)𝑉(𝑡)
we have 

・・・(B7) 
𝑑𝐿

0
(𝑡)

𝑑𝑡 =−
𝑑 𝑇(𝑡)−𝑇

0( )2

𝑇(𝑡) − 1
𝑁 α(𝑎)𝑖(𝑡, 𝑎)[ ]

𝑎=∞
+ 𝑐

𝑁 𝑅
0

− 1( )𝑉(𝑡)

Therefore, when R0<1, dL0(t)dt≤0 holds. Only when (T(t), i(t, a), V(t))= E0, dL0(t)dt=0. Thus, 
the solution of the mathematical model converges to the infection-free equilibrium state E0 
when it exists, and becomes globally asymptotically stable. 
 
Next, we will simply show that when R0>1, the solution of the differential equation system 
globally converges to the infection equilibrium state E*=(T*, i*(a), V*), that is, the infection 
does not die out. However, 

・・・(B8) 𝑇 *= 𝑐
β𝑁 ,   𝑖 * (𝑎) = β𝑇 * 𝑉 * σ(𝑎),  𝑉 *= λ

𝑐 𝑁 − 𝑑
β

Here, (a) and (a) are defined in the same way as above. The Lyapunov function L*(t) for the 
infection equilibrium state E* is defined as follows,  

:=𝐿 * (𝑡)

𝑇(𝑡) − 𝑇 *− 𝑇 * 𝑙𝑜𝑔 𝑇(𝑡)
𝑇*( ) + 1

𝑁
0

∞

∫ α(𝑎)𝑖 * (𝑎) 𝑖(𝑡,𝑎)
𝑖*(𝑎) − 1 − 𝑙𝑜𝑔 𝑖(𝑡,𝑎)

𝑖*(𝑎)( ) 𝑑𝑎 + 1
𝑁 𝑉(𝑡) − 𝑉 *− 𝑉 * 𝑙𝑜𝑔 𝑉(𝑡)

𝑉*( )
・・・(B9) 

The time derivative of L*(t) is, 

・・・
𝑑𝐿*(𝑡)

𝑑𝑡 = 1 − 𝑇*
𝑇(𝑡)( ) 𝑑𝑇(𝑡)

𝑑𝑡 + 1
𝑁

0

∞

∫ α(𝑎)𝑖 * (𝑎) ∂
∂𝑡

𝑖(𝑡,𝑎)
𝑖*(𝑎) − 𝑙𝑜𝑔 𝑖(𝑡,𝑎)

𝑖*(𝑎)( ) 𝑑𝑎 + 1
𝑁 1 − 𝑉*

𝑉(𝑡)( ) 𝑑𝑉(𝑡)
𝑑𝑡

(B10) 
When transformed using equations (1)-(6) and (B3), (B8),  and , α(0) = 𝑁 𝑖 * (0) = β𝑇 * 𝑉 *
we have, 

 𝑑𝐿*(𝑡)
𝑑𝑡 =− 𝑑 𝑇(𝑡)−𝑇*( )2

𝑇(𝑡)

 − 1
𝑁 α(𝑎)𝑖 * (𝑎) 𝑖(𝑡,𝑎)

𝑖*(𝑎) − 1 − 𝑙𝑜𝑔 𝑖(𝑡,𝑎)
𝑖*(𝑎)( )⎡⎣ ⎤⎦𝑎=∞

 − 1
𝑁

0

∞

∫ 𝑝(𝑎)𝑖 * (𝑎) 𝑇*
𝑇(𝑡) − 1 − 𝑙𝑜𝑔 𝑇*

𝑇(𝑡)( ) 𝑑𝑎

・・・(B11) − 1
𝑁

0

∞

∫ 𝑝(𝑎)𝑖 * (𝑎) 𝑉*𝑖(𝑡,𝑎)
𝑉(𝑡)𝑖*(𝑎) − 1 − 𝑙𝑜𝑔 𝑉*𝑖(𝑡,𝑎)

𝑉(𝑡)𝑖*(𝑎)( ) 𝑑𝑎

Since the second, third, and fourth terms on the right-hand side of (B11) have the form 
, , and the equality  holds only when 𝑔(𝑥) = 𝑥 − 1 − 𝑙𝑜𝑔 𝑥 (𝑥 > 0) 𝑑𝐿*(𝑡)

𝑑𝑡 ≤ 0 𝑑𝐿*(𝑡)
𝑑𝑡 = 0

. Therefore, the solution of the mathematical model converges to 𝑇(𝑡),  𝑖(𝑡, 𝑎),  𝑉(𝑡( )) = 𝐸 *
the infection equilibrium state E* when it exists, and becomes globally asymptotically stable. 

Appendix C: Details of parameter estimation 

When estimating parameters, if we use the mathematical models (1)-(5) as they are, we 
cannot obtain plausible results even if we perform parameter estimation using reliable 
experimental data from the Wet Lab or literature. This is because, although our model has 
only three variables to describe the epidemiological state, we must estimate many more 
parameters, including the constants from the functional forms of δ(a) and p(a) (Table 2.2). 
Therefore, we estimated the parameters in the following three stages. 



1.​ Estimation of λ and d from a cell proliferation experiment [6] 
2.​ Estimation of δ(a), p(a), and c from a high MOI infection experiment [5] 
3.​ Estimation of β from a low MOI infection experiment [6] 

 
1.We consider the following mathematical model that describes cell proliferation. 
dT(t)/dt = λ-dT(t) 
We fitted λ and d to the 'Viable cell density' data of the 'Control' group in Fig. 3(A) of [6], with 
T0​ fixed at 1×106. 

 
 
λ and d were estimated as λ = 5.64×10⁴ and d = 5.97×10⁻³, respectively. 
 
2.We consider the following mathematical model describing a single-cycle infection where no 
new infections occur. 

式(C2-C5) 
 

For the HEK293 (non-adapted virus) data in Fig. 5 of [5], we fixed i₀(0) = 2.0×10⁶, i₀(a) = 0 
(for a > 0), V₀ = 0, and a₁ = 5.00, and then fitted δ, p�ₐₓ, b₁, and c. 
 



 
The parameters were estimated as δ = 6.18×10⁻², p�ₐₓ = 2.93×10², b₁ = 1.10×10⁻³, and c = 
5.73×10³. 
 
3.We consider the complete TIV model. 
 

 𝑑𝑇(𝑡)
𝑑𝑡 =  λ − 𝑑𝑇(𝑡) − β𝑇(𝑡)𝑉(𝑡)

 ∂𝑖(𝑡,𝑎)
∂𝑡  =  − ∂𝑖(𝑡,𝑎)

∂𝑎  δ(𝑎)𝑖(𝑡, 𝑎) 

 𝑑𝑉(𝑡)
𝑑𝑡 =

0

∞

∫ 𝑝(𝑎)𝑖(𝑡, 𝑎) 𝑑𝑎 − 𝑐𝑉(𝑡)

For the "Viable cell density" of 1 µg/mL Trp in Fig. 3(A) of [6] and the "HA titer" of 1 µg/mL 
Trp in Fig. 3(B) of [6], we estimated V0 and β, with T0 fixed at 1×10^6 and i_0(a)=0. 



 

 
λ, d, δ, p�ₐₓ, b₁, and c were fixed to the values estimated in 1 and 2. V₀ and β were 
estimated as V₀ = 3.63×10⁻² and β = 6.61×10⁻³. 

Appendix D: Derivation of functional local sensitivity of   and  (Tab) 𝑝(𝑎) δ(𝑎)

From equations (6) and (7),   depends in a complex manner on  and . Therefore, 𝑅
0

𝑝(𝑎) δ(𝑎)

a more complex analysis is required compared to other parameters that do not depend on 



infection age a, which is the calculation of functional local sensitivity. In this part, we show 
the derivation method of equations (9) and (10) for the functional local sensitivity of  with 𝑅

0

respect to  and .. 𝑝(𝑎) δ(𝑎)
 
We give an arbitrary perturbation εh to the parameter  that depends on infectious age 𝑦(𝑎)
and change it to . Here ε is the magnitude of the perturbation. At this time, the 𝑦(𝑎) + εℎ(𝑎)
variation  of the burst size with respect to the perturbation h is defined as follows [7]: δ𝑁[ℎ]

・・・(D1) δ𝑁[ℎ]: = 𝑑𝑁[𝑦+εℎ]
𝑑ε |

ε=0

At this time, when  is expressed, the functional derivative is defined δ𝑁[ℎ] =
0

∞

∫ ℎ(𝑎)𝐷(𝑎) 𝑑𝑎

as follows [7]: 
・・・(D2) δ𝑁

δ𝑦(𝑎) : = 𝐷(𝑎)

And the functional local sensitivity of  for  is defined as follows: 𝑅
0

𝑦(𝑎)

・・・(D3) 𝐸
𝑦
(𝑎): = 𝑦(𝑎)

𝑅
0

·
δ𝑅

0

δ𝑦(𝑎) = 𝑦(𝑎)
𝑁 · δ𝑁

δ𝑦(𝑎)

 
First, when calculating , we have, 𝑁[𝑝 + εℎ]

・・・(D4) 𝑁[𝑝 + εℎ] =
0

∞

∫(𝑝(𝑎) + εℎ(𝑎))σ(𝑎) 𝑑𝑎

Here,  is defined in equation (B1). Therefore, σ(𝑎)

・・・(D5) δ𝑁[ℎ] = 𝑑𝑁[𝑝+εℎ]
𝑑ε |

ε=0
=

0

∞

∫ ℎ(𝑎)σ(𝑎) 𝑑𝑎

Therefore, from equations (D2) and (D3), the functional derivative and the functional local 
sensitivity are calculated as follows:  

・・・(D6) δ𝑁
δ𝑝(𝑎) = σ(𝑎)

・・・(9) 𝑒
𝑝
(𝑎) = 𝑝(𝑎)

𝑁 σ(𝑎) = 𝑝(𝑎)
𝑁 𝑒

−
0

𝑎

∫δ(𝑠) 𝑑𝑠

Next, when parameter  is changed to ,  changes to the following . δ(𝑎) δ(𝑎) + εℎ(𝑎) σ(𝑎) σ
ε
(𝑎)

・・・(D7) σ
ε
(𝑎) = 𝑒

−
0

𝑎

∫δ(𝑠) 𝑑𝑠−ε
0

𝑎

∫ℎ(𝑠) 𝑑𝑠
= σ(𝑎)𝑒

−ε
0

𝑎

∫ℎ(𝑠) 𝑑𝑠
≃ σ(𝑎) 1 − ε

0

𝑎

∫ ℎ(𝑠) 𝑑𝑠( )
Here, Taylor expansion was used for the last approximate expression. When calculating 

 using the above, 𝑁[δ + εℎ]

・・・(D8) 𝑁[δ + εℎ] =
0

∞

∫ 𝑝(𝑎)σ
ε
(𝑎) 𝑑𝑎 =

0

∞

∫ 𝑝(𝑎)σ(𝑎) 1 − ε
0

𝑎

∫ ℎ(𝑠) 𝑑𝑠( ) 𝑑𝑎

From equation (D1), the variation of burst size is,  
​δ𝑁[ℎ] = 𝑑𝑁[δ+εℎ]

𝑑ε |
ε=0

 =−
0

∞

∫ 𝑝(𝑎)σ(𝑎)
0

𝑎

∫ ℎ(𝑠) 𝑑𝑠( ) 𝑑𝑎

・・・(D9) =−
0

∞

∫ ℎ(𝑠)
𝑠

∞

∫ 𝑝(𝑎)σ(𝑎) 𝑑𝑎( ) 𝑑𝑠



Here, in the last equality, the order of integration was exchanged. From equations (D2) and 
(D3), the functional derivative and the functional local sensitivity are, 

・・・(D10) δ𝑁
δδ(𝑎) =−

𝑎

∞

∫ 𝑝(𝑢)σ(𝑢) 𝑑𝑢

・・・(10) 𝑒
δ
(𝑎) =− δ(𝑎)

𝑁
𝑎

∞

∫ 𝑝(𝑢)σ(𝑢) 𝑑𝑢 =− δ(𝑎)
𝑁

𝑎

∞

∫ 𝑝(𝑢)𝑒
−

0

𝑢

∫δ(𝑠) 𝑑𝑠
  𝑑𝑢
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