Appendix A: Stochastic derivation of average lifespan, burst size & basic
reproduction number

In this part, we show the process for deriving equations (6) and (7) through a probabilistic
argument based on biological definitions. We also show the derivation of the average
lifespan of infected cells and viruses.

The death rate of infected cells, &(a), is interpreted as the instantaneous rate of death at
infection age a [2]. If we consider X to be a random variable representing the age at death,
F(a) as the probability of dying by age a, f(a) as the probability density function of X, and
P(A) as the probability of an event A occurring, then &(a) is calculated as follows.

L . P(a<X<a+tAa|a<X) _ . P(asX<a+Aa)
8(a): = Ailzlo Aa - Ailfo P(asX)Aa
a d
= % =— - log(1 — F(a))* (A1)
Therefore, probability of dying at infection age a:
—}6(5) ds
Fla=1-¢"' -+ = (A2)
—}8(5) ds
Since F(a) » 1 as a — « is necessary, e ° - 0.
Probability density function of this probability:
—}8(5‘) ds
f(@ = 8(a)e ° =+ (A3)

(o]

Using this, the average lifespan after infection can be calculated by [ af(a) da. If
0

6(a) = 6 = const., then

[ af (@) da =[ ade™*" da = —--(Ad)
0 0

. . . . 1
Similarly, the average lifespan of virus is calculated as —.

Burst size is biologically interpreted as the total number of virus particles produced from
when one infected cell arises until it dies. Therefore, burst size N is defined as follows as the
expected value taking the sum of the product of the amount of virus released by infectious
age a and the probability of dying at infection age a.

N:= [([ p(s) ds) - f(a) da- - (A5)
00

Substituting equation (A3) and calculating further, we have

© a —}8(5) ds
N = [([ p(s) ds)S(a)e ° da
00

0 —} 8(s) ds a —}S(S) ds
= [p(a)e * da — [(J p(s) ds)e I,
0 0



o —}6(5) ds
= [ p(a)e * da-=+(7)
0

—}8(5) ds
0

a
Here, we used the fact that [ p(s)ds < o ande — 0 as a - . From the above,
0

equation (7) is obtained.

Also, the basic reproduction number is biologically interpreted as the number of new infected
cells that one infected cell produces in its lifetime at the initial stage of infection. Therefore,
using virus burst size N, infection rate per virus particle per unit time at t=0 f_TO, and

average lifespan of virus 1/c, the basic reproduction number RO is calculated as follows.

BT,
Ro:: N - — -+ +(6)

Appendix B: Threshold principle of the basic reproduction number(27)

In this section, we briefly introduce the proof that the dynamics of mathematical model (1)-(5)
converges to a state without infection, non-infected equilibrium state, in the case of R0<1,
and converges to a state where infection continues to exist, infected equilibrium state, in the
case of R0>1. The proof refers to reference [4]

First, we will simply show that when R0<1, the solution (T(t), i(t, a), V(t)) of the differential
equation system globally converges to the infection-free equilibrium state EO=(TO, 0, 0), that

is, the infection dies out.
A

However, T 0= T
As characteristic functions, we define the following two non-negative functions:
—}5(5) ds
o(a):=e * -=+(B1)
o —}5(5) ds

a(a):= [ p(we ° du--+(B2)

If (@) and p(a) are non-negative and bounded, it has been found that (a) becomes
non-negative and bounded. Also, we have

D = §(a)a(a) — p(a)- -+ (B3)

The Lyapunov function L,@® for the infection-free equilibrium state Eis defined as follows.
ety =T =T 10a2D) 4 T e Lyipyee-
L(t):= (T(t) T, - T,log T )+ = { a(a)i(t, @) da + -V (t)* - *(B4)

The function g(x)=x-1-log x (x>0) has a global minimum value g(1)=0 at x=1. Therefore,
when T(t)>0,

™ _ o (IT® _ 4 _ IO -
T(t) =T, —T,log T = To( 7. 1 — log . )2 0--+(BYS)
Therefore, Lo(t) > 0. From this and a(a)= 0, Lo(t) takes the minimum value 0 only at point

E,. The time derivative of Lo(t) is,

dL(t) Ty \ dre 157 3i(t,a) 1 dv(e)
ot _ o |4 , 1 . ees
d (1 T(t)) a T N{O‘(a) o dat g (B6)




When this is transformed using equations (1)-(6), (B3), a(0) = N and i(¢t,0) = BT(t)V (1),
we have

chgt(t) __ d(T(;zt—)TO) _ %[a(a)i(t, a)]a:w + %(RO _ 1)V(t)' . '(B7)

Therefore, when R0O<1, dLO(t)dt<0 holds. Only when (T(t), i(t, a), V(t))= EO, dLO(t)dt=0. Thus,
the solution of the mathematical model converges to the infection-free equilibrium state EO
when it exists, and becomes globally asymptotically stable.

Next, we will simply show that when R0>1, the solution of the differential equation system
globally converges to the infection equilibrium state E*=(T*, i*(a), V*), that is, the infection
does not die out. However,

T*—B—N, i *(a) =BT *V * o(a), V*——N —— -+(B8)
Here, (a) and (a) are defined in the same way as above. The Lyapunov function L*(t) for the
infection equilibrium state E* is defined as follows,

L* (t):=

(T(t) — T AT % zog%) —f a(a)i * (a)(‘f(;‘) —1- log%) da + (V(t) — Y E— Y log%l)

-+(B9)
The time derivative of L*(t) is,

TR (R 1. %’f (@i * (@4 10g 48 g + {1 - ).

dt dt *(a) *(a) v ) dt

(B10)
When transformed using equations (1)-(6) and (B3), (B8), a(0) = Nandi * (0) = BT * V *,
we have,

e _ d(T()-T*"
()

_ 1 - i(ta) _ i(t,a)
T{“(“)l (a)(i*(a) 1= log<ay )]

17 . * *
- Tgp(aﬁ * (a)(%— 1 - log%) da

- Lm ;o VH(ta) 4 V*i(t,a) .
N{P(Cl)l (@) (Frsa = 1 = lograeas) da-++(B11)
Since the second, third, and fourth terms on the right-hand side of (B11) have the form
gx)=x—-1—-logx(x > 0), M < 0, and the equalltyﬂEl = 0 holds only when

(T(), i(t,a), V(t)) = E *. Therefore, the solution of the mathematical model converges to
the infection equilibrium state E* when it exists, and becomes globally asymptotically stable.

Appendix C: Details of parameter estimation

When estimating parameters, if we use the mathematical models (1)-(5) as they are, we
cannot obtain plausible results even if we perform parameter estimation using reliable
experimental data from the Wet Lab or literature. This is because, although our model has
only three variables to describe the epidemiological state, we must estimate many more
parameters, including the constants from the functional forms of &(a) and p(a) (Table 2.2).
Therefore, we estimated the parameters in the following three stages.



1. Estimation of A and d from a cell proliferation experiment [6]
2. Estimation of 8(a), p(a), and ¢ from a high MOI infection experiment [5]
3. Estimation of B from a low MOI infection experiment [6]

1.We consider the following mathematical model that describes cell proliferation.

dT(t)/dt = A-dT(t)

We fitted A and d to the 'Viable cell density' data of the 'Control' group in Fig. 3(A) of [6], with
TO fixed at 1x106.
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A and d were estimated as A = 5.64x10* and d = 5.97x1073, respectively.

2.We consider the following mathematical model describing a single-cycle infection where no

new infections occur.
= (C2-C5)

For the HEK293 (non-adapted virus) data in Fig. 5 of [5], we fixed is(0) = 2.0x10°, is(a) =0
(fora > 0), Vo =0, and a: = 5.00, and then fitted 9, pllax, b1, and c.
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The parameters were estimated as & = 6.18x1072, pllax = 2.93x10% b1 = 1.10%x103, and c =
5.73x103.

3.We consider the complete TIV model.

O = A - dT@®) - BTEOV(®

dita) _ _ di(ta) .
— = —. 8(@)i(t, a)

% = ofop(a)i(t, a)da — cV(t)
0

For the "Viable cell density" of 1 ug/mL Trp in Fig. 3(A) of [6] and the "HA titer" of 1 ug/mL
Trp in Fig. 3(B) of [6], we estimated VO and 3, with TO fixed at 1x10”6 and i_0(a)=0.
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A, d, 8, plax, b1, and ¢ were fixed to the values estimated in 1 and 2. Vo and B were
estimated as Vo = 3.63x102and B = 6.61x1073.

Appendix D: Derivation of functional local sensitivity of p(a) and &(a)(Tab)
From equations (6) and (7), R depends in a complex manner on p(a) and 6(a). Therefore,

a more complex analysis is required compared to other parameters that do not depend on



infection age a, which is the calculation of functional local sensitivity. In this part, we show
the derivation method of equations (9) and (10) for the functional local sensitivity of R, with

respect to p(a) and 6(a)..

We give an arbitrary perturbation €h to the parameter y(a) that depends on infectious age
and change it to y(a) + €h(a). Here ¢ is the magnitude of the perturbation. At this time, the
variation SN[h] of the burst size with respect to the perturbation h is defined as follows [7]:

d eh
SN[h]: = %L:O. -+(D1)

(0]

At this time, when 8N[h] = [ h(a)D(a) da is expressed, the functional derivative is defined
0

as follows [7]:

5%:: D(a)- -+ (D2)

And the functional local sensitivity of R, for y(a) is defined as follows:

@ R y@ v,
E (a):= R, @ . N H@ (D3)

First, when calculating N[p + €h], we have,
N[p + €h] = Ofo(p(a) + eh(a))o(a) da-+-(D4)
Here, o(a) is defined in equation (B1)f) Therefore,
de

SN[h] = = Ofoh(a)c(a) da- -+ (D5)
0

Therefore, from equations (D2) and (D3), the functional derivative and the functional local

sensitivity are calculated as follows:
5N

5 = 0(a)*+(D6)
—}8(5) ds
e (a) = -%Vﬂc(a) = -%Le ‘ -++(9)
Next, when parameter §(a) is changed to §(a) + €h(a), o(a) changes to the following os(a).
—}5(5) ds—s}h(s) ds —s}h(s) ds a
c(a)=e’ 0 = o(a)e ° ~ O'(Cl)(l — e h(s) ds)-- - (D7)
0

Here, Taylor expansion was used for the last approximate expression. When calculating
N[8 + e€h] using the above,

N[§ + €h] = Ofop(a)cs(a) da = ofop(a)cs(a)(l - s} h(s) ds) da-+-(D8)
0 0 0
From equation (D1), the variation of burst size is,
SN[h] = dN[Z:—sh] |£=0
=— ofop(a)(j(a)(; h(s) ds) da
0 0

=- }oh<s>(°f° p(Q)o(a) da) ds*++(D9)
0 N



Here, in the last equality, the order of integration was exchanged. From equations (D2) and
(D3), the functional derivative and the functional local sensitivity are,

SN

@ == J pWo) du--+(D10)

< o —}5(5) ds
es(a) = ﬂ]\%fp(u)ﬁ(u) du =— ﬁ%f p(we ° du--+(10)
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